

# Report EurA1c 2017 HbA1c Trial EQA organisers



| I    | Introduction and Overview of Results       | 2  |
|------|--------------------------------------------|----|
| II   | Results EQA Fresh Whole Blood samples      | 5  |
|      | Results EQA Lyophilised Hemolysate samples | 9  |
| IV   | Value Assignment (Targeting)               | 12 |
| V    | Homogeneity                                | 12 |
| VI   | Stability                                  | 13 |
| VII  | Units and POCT meters                      | 15 |
| VIII | Organisations and Persons involved         | 16 |

Definite Version 3 September 2018 Cas Weykamp Carla Siebelder

# I Introduction and Overview of Results

# Introduction

In 2017 twenty EQA organisers agreed to participate in the second "EurA1c" project. The design is shown in figure 1.

12 EQA organisers used fresh whole blood samples and 11 organisers used lyophilised samples (4 organisations used both fresh and lyophilised samples). In October 2017 the fresh whole blood samples were sent to the participants. From November 2017 up to April 2018 the lyophilised samples were assayed by the participants. This report is dealing with the results.

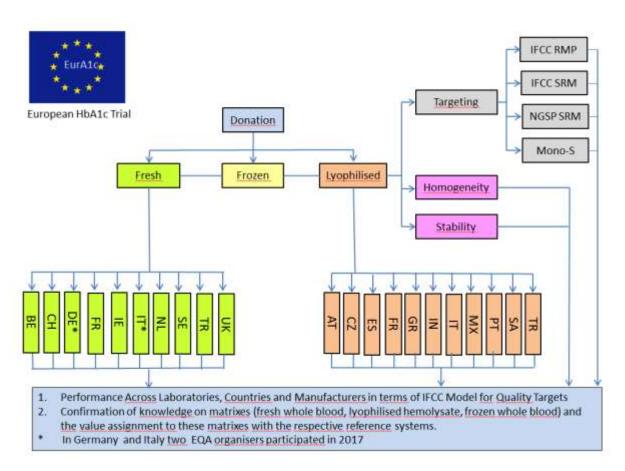



Figure 1. Design EurA1c Trial 2017

# **Confidentiality and Ownership**

The results of the EurA1c project are owned by all EQA organisers. Previously we agreed that reports are confidential and will not be shared with participants and other third parties until there is the definite report.

| The time schedule is:<br>13 July: | Draft report sent to all who are involved in EurA1c 2017. At the same time the    |
|-----------------------------------|-----------------------------------------------------------------------------------|
|                                   | invitation to participate in EurA1c 2018 is sent.                                 |
| 31 August:                        | Deadline for comments and remarks                                                 |
| 30 September:                     | Final report sent to all who are involved. All who are involved are free to share |
|                                   | results with third parties                                                        |

### Value Assignment

5 Approved IFCC Network Laboratories assigned the values to the samples with the IFCC Reference Measurement Procedure. For EurA1c 2017-1 the assigned value is 44.2 mmol/mol (expanded uncertainty 0.7 mmol/mol) and for EurA1c 2017-2 the assigned value is 58.0 mmol/mol (expanded uncertainty 0.8 mmol/mol).

# Outliers

Outliers have been removed before calculation of the mean and between laboratory CV. Instead of using statistical criteria we only considered "blunders" as outliers. Criterion was a difference exceeding 25% of the target values. In our opinion these results are a relevant picture of "real life". In this way 30 results (0.8%) have been excluded from the database of fresh whole blood samples and 18 results (1.1%) from the database of lyophilised hemolysates.

### Methods

This is a point of consideration. The definition of the methods varied per EQA organiser and for quite a number of laboratories the method was not reported at all (113 of the 1809 laboratories using fresh whole blood; 24 of the 838 laboratories using lyophilised hemolysate). In the reports you will see this reflected. It is desirable that this is improved in future trials.

### Units

In some cases results were reported in NGSP units. We converted them to SI (IFCC) units using the Master Equation (NGSP = 0.0915IFCC + 2.15) prior to calculation of means, SDs and making comparisons. All results in the report are in SI units.

# **Summary Results**

Table 1 summarizes the results. The participating EQA organisers are ranked per country in alphabetical order. Results are given for the fresh whole blood and lyophilised hemolysate samples.

|                 | Fi   | resh Whole Blo              | bod                         | Lyo | philised Hemo               | lysate                      |
|-----------------|------|-----------------------------|-----------------------------|-----|-----------------------------|-----------------------------|
| Country         | n    | Mean<br>Bias in<br>mmol/mol | Between<br>Laboratory<br>CV | n   | Mean<br>Bias in<br>mmol/mol | Between<br>Laboratory<br>CV |
| Austria         |      |                             |                             | 138 | +0.6                        | 5.1%                        |
| Belgium         | 135  | +1.1                        | 2.6%                        |     |                             |                             |
| Czech Republic  |      |                             |                             | 208 | 0.4                         | 4.4%                        |
| France          | 111  | +0.4                        | 3.0%                        | 112 | +0.1                        | 5.7%                        |
| Germany Instand | 637  | +0.6                        | 4.6%                        |     |                             |                             |
| Germany RfB     | 74   | +1.1                        | 4.3%                        |     |                             |                             |
| Greece          |      |                             |                             | 77  | +0.8                        | 6.5%                        |
| International*  |      |                             |                             | 66  | +0.1                        | 4.2%                        |
| Ireland         | 44   | +1.1                        | 3.5%                        |     |                             |                             |
| Italy CRB       | 64   | +1.1                        | 3.8%                        | 61  | +0.6                        | 4.8%                        |
| Italy Polymed   | 125  | +0.6                        | 4.4%                        |     |                             |                             |
| Mexico          |      |                             |                             | 19  | -0.3                        | 12.7%                       |
| Netherlands     | 128  | +0.8                        | 3.2%                        |     |                             |                             |
| Portugal        |      |                             |                             | 42  | +0.4                        | 5.1%                        |
| South Africa    |      |                             |                             | 3   | -0.1                        | 3.5%                        |
| Spain           |      |                             |                             | 71  | +0.5                        | 3.5%                        |
| Sweden          | 138  | +0.3                        | 3.7%                        |     |                             |                             |
| Switzerland     | 155  | +0.4                        | 4.6%                        |     |                             |                             |
| Turkey          | 53   | +1.0                        | 5.4%                        | 41  | 2.1                         | 5.7%                        |
| United Kingdom  | 145  | +1.2                        | 3.4%                        |     |                             |                             |
| Overall         | 1809 | +0.7                        | 4.1%                        | 838 | +0.5                        | 5.3%                        |

\* Individual laboratories of a number of countries

In total 2647 laboratories participated in EurA1c 2017: 1809 used fresh whole blood samples and 838 used lyophilised hemolysates. The results are encouraging. The mean bias of all countries in the fresh whole blood programme is +0.7 mmol/mol and in the lyophilised hemolysate programme +0.5 mmol/mol. The between laboratory CV is also quite satisfying. The mean CV in both programmes is 4.1% and 5.3% respectively.

### **Differentiation Results**

Results are differentiated by sample a) per country, b) per manufacturer, and c) per manufacturer per country in fresh whole blood (section II) and lyophilised hemolysates (section III).

# **II Results EQA Fresh Whole Blood samples**

Table 2 shows the results per country for each sample. Tables 3 and 4 show the results per manufacturer for manufacturers with 6 or more participants (table 3) and those with 5 or less participants (table 4).

| Country         | EurA1c 2017-1<br>Target 44.2 mmol/mol |      |      |      | Та   | EurA1c<br>rget 58.0 | Mean<br>2 Samples |     |      |     |
|-----------------|---------------------------------------|------|------|------|------|---------------------|-------------------|-----|------|-----|
|                 | n                                     | Mean | Bias | CV % | n    | Mean                | Bias              | CV% | Bias | CV% |
| Belgium         | 134                                   | 45.2 | +1.0 | 2.7  | 135  | 59.1                | +1.1              | 2.4 | +1.1 | 2.6 |
| France          | 111                                   | 44.7 | +0.5 | 3.3  | 111  | 58.3                | +0.3              | 2.6 | +0.4 | 3.0 |
| Germany Instand | 635                                   | 44.8 | +0.6 | 4.6  | 637  | 58.6                | +0.6              | 4.6 | +0.6 | 4.6 |
| Germany RfB     | 74                                    | 45.3 | +1.1 | 4.1  | 74   | 59.1                | +1.1              | 4.5 | +1.1 | 4.3 |
| Ireland         | 44                                    | 45.3 | +1.1 | 3.7  | 44   | 59.1                | +1.1              | 3.2 | +1.1 | 3.5 |
| Italy CRB       | 64                                    | 45.4 | +1.2 | 3.9  | 64   | 58.9                | +0.9              | 3.6 | +1.1 | 3.8 |
| Italy Polymed   | 125                                   | 44.9 | +0.7 | 4.6  | 125  | 58.6                | +0.6              | 4.2 | +0.6 | 4.4 |
| Netherlands     | 127                                   | 45.0 | +0.8 | 3.7  | 128  | 58.7                | +0.7              | 2.6 | +0.8 | 3.2 |
| Sweden          | 139                                   | 44.4 | +0.2 | 3.9  | 138  | 58.4                | +0.4              | 3.4 | +0.3 | 3.7 |
| Switzerland     | 156                                   | 44.6 | +0.4 | 4.7  | 155  | 58.5                | +0.5              | 4.4 | +0.4 | 4.6 |
| Turkey          | 54                                    | 45.2 | +1.0 | 5.8  | 53   | 59.0                | +1.0              | 4.9 | +1.0 | 5.4 |
| UK              | 144                                   | 45.3 | +1.1 | 3.3  | 145  | 59.2                | +1.2              | 3.5 | +1.2 | 3.4 |
|                 |                                       |      |      |      |      |                     |                   |     |      |     |
| Overall         | 1807                                  | 44.9 | +0.7 | 4.2  | 1809 | 58.7                | +0.7              | 4.0 | +0.7 | 4.1 |

Table 2. Results per Country for Fresh Whole Blood

| Table 3. Results per Manufacturer for Fresh Whole Blood (n>5) | Table 3. Results | Manufacturer for Fresh Whole Blood | (n>5) |
|---------------------------------------------------------------|------------------|------------------------------------|-------|
|---------------------------------------------------------------|------------------|------------------------------------|-------|

| Manufacturer              | Та  | EurA1c<br>rget 44.2 |      | nol  | Та  | EurA1c<br>rget 58.0 |      | nol | Mean<br>2 Samples |     |
|---------------------------|-----|---------------------|------|------|-----|---------------------|------|-----|-------------------|-----|
|                           | n   | Mean                | Bias | CV % | n   | Mean                | Bias | CV% | Bias              | CV% |
| Abbott Architect          | 35  | 44.3                | +0.1 | 3.9  | 35  | 58.4                | +0.4 | 3.1 | +0.2              | 3.5 |
| Alere Afinion             | 165 | 44.1                | -0.1 | 3.9  | 168 | 57.8                | -0.2 | 3.6 | -0.2              | 3.8 |
| Beckman Coulter AU        | 32  | 44.8                | +0.6 | 7.2  | 33  | 57.4                | -0.6 | 6.1 | 0.0               | 6.7 |
| Beckman Coulter UC DxC    | 17  | 45.0                | +0.8 | 5.1  | 17  | 59.2                | +1.2 | 5.0 | +1.0              | 5.1 |
| Bio-Rad D10               | 59  | 45.6                | +1.4 | 4.7  | 60  | 59.5                | +1.5 | 4.8 | +1.5              | 4.8 |
| Bio-Rad D100              | 19  | 44.1                | -0.1 | 3.2  | 19  | 57.2                | -0.8 | 2.5 | -0.4              | 2.9 |
| Bio-Rad Variant           | 112 | 45.4                | +1.2 | 3.9  | 112 | 59.2                | +1.2 | 3.0 | +1.2              | 3.5 |
| Medinor                   | 10  | 44.7                | +0.5 | 8.3  | 10  | 58.0                | 0.0  | 6.9 | +0.3              | 7.6 |
| Menarini (ARKRAY) HA 8160 | 76  | 45.3                | +1.1 | 3.1  | 76  | 58.9                | +0.9 | 2.6 | +1.0              | 2.9 |
| Menarini (ARKRAY) HA 8180 | 100 | 45.1                | +0.9 | 3.2  | 100 | 58.7                | +0.7 | 2.7 | +0.8              | 3.0 |
| Not Known                 | 113 | 44.9                | +0.7 | 5.6  | 111 | 58.0                | 0.0  | 6.6 | +0.3              | 6.1 |
| Roche Diagnostics         | 319 | 44.0                | -0.2 | 3.8  | 318 | 58.4                | +0.4 | 3.5 | +0.1              | 3.7 |
| Sebia Capillarys 2        | 64  | 44.3                | +0.1 | 2.9  | 64  | 57.7                | -0.3 | 2.4 | -0.1              | 2.7 |
| Sebia Capillarys 3        | 13  | 44.7                | +0.5 | 2.0  | 13  | 58.0                | 0.0  | 1.5 | +0.3              | 1.8 |
| Sebia Minicap             | 13  | 44.4                | +0.2 | 3.1  | 13  | 57.8                | -0.2 | 2.0 | 0.0               | 2.6 |
| Siemens Advia             | 13  | 46.9                | +2.7 | 6.8  | 14  | 61.0                | +3.0 | 8.6 | +2.9              | 7.7 |
| Siemens DCA/Vantage       | 217 | 45.3                | +1.1 | 4.3  | 217 | 59.6                | +1.6 | 4.2 | +1.4              | 4.3 |
| Siemens Dimension         | 56  | 46.4                | +2.2 | 3.9  | 56  | 58.3                | +0.3 | 4.0 | +1.3              | 4.0 |
| Tosoh G7                  | 31  | 45.6                | +1.4 | 4.5  | 30  | 59.6                | +1.6 | 3.2 | +1.5              | 3.9 |
| Tosoh G8                  | 281 | 45.4                | +1.2 | 2.7  | 281 | 59.3                | +1.3 | 2.6 | +1.3              | 2.7 |
| Trinity Premier Hb9210    | 29  | 45.3                | +1.1 | 3.7  | 29  | 59.5                | +1.5 | 2.8 | +1.3              | 3.3 |

| Manufacturer                             | Та | EurA1c<br>arget 44.2 | 2017-1<br>2 mmol/ | mol  | EurA1c 2017-2<br>Target 58.0 mmol/mol |      |      |     | Mean<br>2 Samples |     |
|------------------------------------------|----|----------------------|-------------------|------|---------------------------------------|------|------|-----|-------------------|-----|
|                                          | n  | Mean                 | Bias              | CV % | n                                     | Mean | Bias | CV% | Bias              | CV% |
| Abbott other                             | 1  | 45.0                 | +0.8              |      | 1                                     | 58.0 | 0.0  |     | 0.4               |     |
| Beckman Coulter other                    | 1  | 47.0                 | +2.8              |      | 1                                     | 61.0 | +3.0 |     | 2.9               |     |
| Beckman Coulter P/ACE MDQ                | 1  | 41.0                 | -3.2              |      | 1                                     | 58.5 | +0.5 |     | -1.4              |     |
| Biokit ILAB 600                          | 1  | 46.0                 | +1.8              |      | 1                                     | 60.0 | +2.0 |     | 1.9               |     |
| Bio-Rad other                            | 1  | 43.2                 | -1.0              |      | 1                                     | 59.6 | +1.6 |     | 0.3               |     |
| DiaSys InnovaStar                        | 2  | 47.4                 | +3.2              | 1.6  | 2                                     | 61.4 | +3.4 | 7.7 | 3.3               | 4.7 |
| Eurolyser Smart 700/340                  | 3  | 45.0                 | +0.8              | 1.4  | 3                                     | 56.6 | -1.4 | 5.9 | -0.3              | 3.7 |
| HemoCue HbA1c 501                        | 1  | 45.0                 | +0.8              |      | 1                                     | 61.0 | +3.0 |     | 1.9               |     |
| Hitado other                             | 1  | 50.0                 | +5.8              |      | 1                                     | 64.0 | +6.0 |     | 5.9               |     |
| Horiba Pentra                            | 2  | 42.1                 | -2.1              | 7.3  | 2                                     | 55.6 | -2.4 | 1.7 | -2.3              | 4.5 |
| Menarini (ARKRAY) HA 8140                | 2  | 46.5                 | +2.3              | 1.5  | 2                                     | 61.5 | +3.5 | 1.1 | 2.9               | 1.3 |
| Menarini (ARKRAY) other                  | 3  | 45.3                 | +1.1              | 2.7  | 3                                     | 59.4 | +1.4 | 3.4 | 1.3               | 3.1 |
| Mindray                                  | 2  | 40.5                 | -3.7              | 5.2  | 2                                     | 55.0 | -3.0 | 5.1 | -3.4              | 5.2 |
| Mono S                                   | 1  | 43.7                 | -0.5              |      | 1                                     | 56.9 | -1.1 |     | -0.8              |     |
| Ortho Clinical Diagnostics Vitros 5.1 FS | 1  | 45.3                 | 1.1               |      | 1                                     | 57.4 | -0.6 |     | 0.2               |     |
| Recipe HPLC                              | 1  | 43.2                 | -1.0              |      | 1                                     | 58.5 | +0.5 |     | -0.3              |     |
| Shimadzu Mono S                          | 1  | 43.2                 | -1.0              |      | 1                                     | 57.0 | -1.0 |     | -1.0              |     |
| Tosoh G9                                 | 1  | 45.0                 | +0.8              |      | 1                                     | 61.0 | +3.0 |     | 1.9               |     |
| Tosoh G10                                | 2  | 46.0                 | +1.8              | 9.2  | 2                                     | 60.0 | +2.0 | 7.1 | 1.9               | 8.2 |
| Tosoh G11                                | 1  | 45.0                 | +0.8              |      | 1                                     | 59.0 | +1.0 |     | 0.9               |     |
| Tosoh GX                                 | 1  | 45.0                 | +0.8              |      | 1                                     | 59.0 | +1.0 |     | 0.9               |     |
| Tosoh other                              | 3  | 44.8                 | +0.6              | 1.2  | 3                                     | 58.5 | +0.5 | 0   | 0.5               | 0.6 |

Table 4. Results per Manufacturer for Fresh Whole Blood (n < 6)

The results in tables 2 and 3 are consistent: for each of the samples low (nearly always positive) biases are seen per country and per manufacturer. Also quite acceptable are the between laboratory CVs. Unfortunately quite a number (n=113)

laboratories did not specify their method. These laboratories are in the group "Not Known".

Table 5 shows the performance per manufacturer per country. Included are only manufacturers meeting 2 criteria: at least 6 participants per country and at least two countries with 6 participants. We marked high biases (>2 mmol/mol) and high between laboratory CVs >6%)

| Method                             | n   | HbA1         | : Low      | HbA10        | : High     | Mean         |            |  |
|------------------------------------|-----|--------------|------------|--------------|------------|--------------|------------|--|
| Method                             | "   | Bias         | CV         | Bias         | CV         | Bias         | CV         |  |
| Abbott Architect                   |     |              |            |              |            |              |            |  |
| Overall                            | 35  | +0.1         | 3.9        | +0.4         | 3.1        | +0.2         | 3.5        |  |
| DE-Instand                         | 15  | +0.8         | 4.8        | +1.3         | 3.7        | +1.1         | 4.3        |  |
| FR                                 | 8   | -0.5         | 2.0        | -0.5         | 1.6        | -0.5         | 1.8        |  |
| Alere Afinion                      |     |              |            |              |            |              |            |  |
| Overall                            | 165 | -0.1         | 3.9        | -0.2         | 3.6        | -0.2         | 3.8        |  |
| DE-Instand                         | 31  | +0.1         | 3.1        | +0.3         | 2.9        | +0.2         | 3.0        |  |
| IE                                 | 11  | +0.7         | 4.2        | -0.2         | 2.0        | +0.2         | 3.1        |  |
| SE                                 | 42  | -1.1         | 3.0        | -0.8         | 2.5        | -0.9         | 2.8        |  |
| CH                                 | 69  | +0.5         | 3.9        | -0.1         | 4.3        | +0.2         | 4.1        |  |
| Bio-Rad D10                        |     |              |            |              |            | 1 .          |            |  |
| Overall                            | 59  | +1.4         | 4.7        | +1.5         | 4.8        | +1.5         | 4.8        |  |
| DE-Instand                         | 37  | +1.2         | 4.6        | +1.5         | 4.8        | +1.4         | 4.7        |  |
| FR                                 | 6   | +1.9         | 3.9        | +1.9         | 3.6        | +1.9         | 3.8        |  |
| Bio-Rad Variant                    |     |              |            | 1 '          |            |              |            |  |
| Overall                            | 112 | +1.2         | 3.9        | +1.2         | 3.0        | +1.2         | 3.5        |  |
| DE-Instand                         | 22  | +1.2         | 5.2        | +1.2         | 4.5        | +1.2         | 4.9        |  |
| DE-RfB                             | 8   | +1.7         | 3.6        | +2.2         | 3.1        | +2.0         | 3.4        |  |
| FR<br>IT Dahawa d                  | 15  | +1.2         | 3.2        | +1.1         | 1.7        | +1.2         | 2.5        |  |
| IT-Polymed                         | 27  | +1.2         | 3.6        | +1.1         | 2.9        | +1.2         | 3.3        |  |
| TR                                 | 10  | +0.8         | 4.8        | +1.0         | 3.1        | +0.9         | 4.0        |  |
| SE<br>Maraniai (ADI/DA)() IIA 0400 | 15  | +0.6         | 1.5        | +0.8         | 1.6        | +0.7         | 1.6        |  |
| Menarini (ARKRAY) HA 8160          | 70  |              | 0.4        |              | 0.0        | 0            | 0.0        |  |
| Overall                            | 76  | +1.1         | 3.1        | +0.9         | 2.6        | +1.0         | 2.9        |  |
| BE                                 | 26  | +1.4         | 2.8        | +1.4         | 2.6        | +1.4         | 2.7        |  |
| DE-Instand<br>IT-CRB               | 7   | +0.8<br>+0.7 | 2.8<br>3.5 | +1.2<br>+0.4 | 2.0        | +1.0<br>+0.5 | 2.4<br>3.4 |  |
|                                    |     |              |            |              | 3.2<br>1.9 |              |            |  |
| NL<br>Menarini (ARKRAY) HA 8180    | 15  | +1.4         | 3.4        | +0.8         | 1.9        | +1.1         | 2.7        |  |
|                                    | 100 | +0.9         | 3.2        | +0.7         | 2.7        | +0.8         | 2.0        |  |
| Overall<br>BE                      | 36  | +0.9         |            | +0.7         |            |              | 3.0<br>2.7 |  |
| IE                                 | 6   |              | 2.9        | +0.8         | 2.4        | +0.8         |            |  |
| IT-CRB                             | 14  | +0.1<br>+0.9 | 2.7        | +0.2         | 2.0<br>2.1 | +0.1<br>+0.8 | 2.4<br>2.3 |  |
| NL                                 | 20  | +0.9         | 1.9        | +0.7         | 1.3        | +0.8         | 2.3        |  |
| UK                                 | 12  | +0.1         | 4.0        | 0.0          | 3.9        | 0.0          | 4.0        |  |
| Roche                              | 12  | +0.1         | 4.0        | 0.0          | 5.5        | 0.0          | 4.0        |  |
| Overall                            | 319 | -0.2         | 3.8        | +0.4         | 3.5        | +0.1         | 3.7        |  |
| DE-Instand                         | 203 | -0.2         | 3.8        | +0.4         | 3.6        | +0.1         | 3.7        |  |
| DE-RfB                             | 13  | +0.3         | 3.3        | +0.8         | 3.6        | +0.5         | 3.5        |  |
| FR                                 | 7   | 0.0          | 3.2        | +0.6         | 2.9        | +-0.3        | 3.1        |  |
| IT-CRB                             | 6   | +0.7         | 7.3        | -0.2         | 8.1        | +0.3         | 7.7        |  |
| IT-Polymed                         | 6   | -0.8         | 4.6        | -0.2         | 4.3        | -0.5         | 4.5        |  |
| NL                                 | 26  | +0.1         | 3.0        | +0.5         | 2.2        | +0.3         | 2.6        |  |
| TR                                 | 8   | +0.4         | 3.4        | +0.4         | 5.0        | +0.4         | 4.2        |  |
| UK                                 | 7   | -0.6         | 5.5        | +0.7         | 1.9        | +0.1         | 3.7        |  |
| SE                                 | 9   | -1.7         | 2.7        | -1.4         | 2.5        | -1.6         | 2.6        |  |
| CH                                 | 27  | -0.1         | 3.2        | +0.9         | 2.1        | +0.4         | 2.7        |  |
| Sebia Capillarys 2                 |     | 0            | 0.2        |              |            |              |            |  |
| Overall                            | 64  | +0.1         | 2.9        | -0.3         | 2.4        | -0.1         | 2.7        |  |
| BE                                 | 7   | -0.3         | 2.1        | -0.2         | 2.9        | -0.3         | 2.5        |  |
| DE-Instand                         | 8   | +0.2         | 4.0        | -0.2         | 2.9        | 0.0          | 3.5        |  |
| FR                                 | 27  | -0.2         | 2.6        | -0.6         | 2.4        | -0.4         | 2.5        |  |
| IT-Polymed                         | 7   | +0.2         | 2.5        | -1.1         | 2.1        | -0.5         | 2.3        |  |
| UK                                 | 6   | 0.0          | 1.7        | -0.3         | 1.4        | -0.1         | 1.6        |  |

Table 5. Fresh Whole Blood Results per Manufacturer and Country (n>5)

# Table 5. Continued

| Method                 | n   | HbA1 | c Low | HbA1 | c High | Mean |     |  |
|------------------------|-----|------|-------|------|--------|------|-----|--|
| Wethou                 |     | Bias | CV    | Bias | CV     | Bias | CV  |  |
| Siemens DCA/Vantage    | •   |      |       |      |        |      |     |  |
| Overall                | 217 | +1.1 | 4.3   | +1.6 | 4.2    | +1.4 | 4.3 |  |
| DE-Instand             | 52  | +0.5 | 4.0   | +0.8 | 4.2    | +0.6 | 4.1 |  |
| DE-RFB                 | 13  | +1.4 | 3.4   | +1.5 | 4.6    | +1.5 | 4.0 |  |
| IE                     | 16  | +1.6 | 3.7   | +2.8 | 2.7    | +2.2 | 3.2 |  |
| NL                     | 13  | +0.7 | 4.7   | +0.6 | 4.2    | +0.6 | 4.5 |  |
| UK                     | 40  | +1.6 | 3.8   | +2.0 | 4.8    | +1.8 | 4.3 |  |
| SE                     | 55  | +1.2 | 3.7   | +1.6 | 3.3    | +1.4 | 3.5 |  |
| СН                     | 28  | +1.3 | 6.2   | +2.1 | 4.9    | +1.7 | 5.6 |  |
| Siemens Dimension      | •   |      |       | •    |        | •    |     |  |
| Overall                | 56  | +2.2 | 3.9   | +0.3 | 4.0    | +1.3 | 4.0 |  |
| DE-Instand             | 36  | +2.0 | 3.7   | +0.0 | 4.2    | +1.0 | 4.0 |  |
| DE-RFB                 | 6   | +2.9 | 4.0   | +1.5 | 3.7    | +2.2 | 3.9 |  |
| Tosoh G7               | •   |      |       |      |        |      |     |  |
| Overall                | 31  | +1.4 | 4.5   | +1.6 | 3.2    | +1.5 | 3.9 |  |
| DE-Instand             | 8   | +2.5 | 2.2   | +2.7 | 2.7    | +2.6 | 2.5 |  |
| IT-PM                  | 6   | -0.6 | 7.2   | +0.3 | 4.0    | -0.2 | 5.6 |  |
| Tosoh G8               | •   |      |       |      |        |      |     |  |
| Overall                | 281 | +1.2 | 2.7   | +1.3 | 2.6    | +1.3 | 2.7 |  |
| BE                     | 39  | +1.2 | 2.3   | +1.4 | 2.0    | +1.3 | 2.2 |  |
| DE-Instand             | 53  | +1.0 | 2.7   | +1.0 | 3.4    | +1.0 | 3.1 |  |
| DE-RFB                 | 10  | +1.2 | 1.5   | +1.2 | 1.6    | +1.2 | 1.6 |  |
| FR                     | 24  | +0.6 | 2.0   | +0.5 | 2.4    | +0.5 | 2.2 |  |
| IE                     | 6   | +1.8 | 1.9   | +1.5 | 1.8    | +1.7 | 1.9 |  |
| IT-CRB                 | 10  | +1.5 | 2.3   | +1.4 | 2.7    | +1.5 | 2.5 |  |
| IT-Polymed             | 43  | +1.0 | 4.1   | +1.3 | 3.1    | +1.2 | 3.6 |  |
| NL                     | 29  | +1.7 | 2.7   | +1.6 | 2.1    | +1.7 | 2.4 |  |
| TR                     | 9   | +1.3 | 2.6   | +1.6 | 2.2    | +1.5 | 2.4 |  |
| UK                     | 47  | +1.5 | 1.5   | +1.7 | 1.5    | +1.6 | 1.5 |  |
| SE                     | 10  | +0.6 | 2.3   | +0.6 | 2.3    | +0.6 | 2.3 |  |
| Trinity Premier Hb9210 |     | •    | •     | •    | •      | •    |     |  |
| Overall                | 29  | +1.1 | 3.7   | +1.5 | 2.8    | +1.3 | 3.3 |  |
| FR                     | 7   | +1.1 | 3.8   | +1.8 | 3.2    | +1.5 | 3.5 |  |
| UK                     | 10  | +1.5 | 3.5   | +1.9 | 2.5    | +1.7 | 3.0 |  |

# **III Results EQA Lyophilised Hemolysate samples**

Table 6 shows the results per country for each sample. Tables 7 and 8 show the results per manufacturer for manufacturers with 6 or more participants (table 7) and 5 or less participants (table 8).

| Country        | Та  | EurA1c<br>rget 44.2 |      | nol  | Та  | EurA1c<br>rget 58.0 | Mean<br>2 Samples |      |      |      |
|----------------|-----|---------------------|------|------|-----|---------------------|-------------------|------|------|------|
|                | n   | Mean                | Bias | CV % | n   | Mean                | Bias              | CV%  | Bias | CV%  |
| Austria        | 138 | 45.2                | +1.0 | 5.2  | 138 | 58.1                | +0.1              | 4.9  | +0.6 | 5,1  |
| Czech Republic | 208 | 45.2                | +1.0 | 4.6  | 208 | 57.9                | -0.1              | 4.1  | +0.4 | 4,4  |
| France         | 112 | 44.8                | +0.6 | 6.1  | 111 | 57.7                | -0.3              | 5.3  | +0.1 | 5,7  |
| Greece         | 77  | 45.6                | +1.4 | 6.9  | 76  | 58.3                | +0.3              | 6.0  | +0.8 | 6,5  |
| International* | 66  | 44.7                | +0.5 | 4.5  | 69  | 57.6                | -0.4              | 3.9  | +0.1 | 4,2  |
| Italy CRB      | 61  | 45.4                | +1.2 | 5.4  | 60  | 58.0                | 0.0               | 4.2  | +0.6 | 4,8  |
| Mexico         | 19  | 45.2                | +1.0 | 12.7 | 17  | 56.4                | -1.6              | 12.7 | -0.3 | 12,7 |
| Portugal       | 42  | 45.3                | +1.1 | 5.2  | 43  | 57.8                | -0.2              | 5.0  | +0.4 | 5,1  |
| South Africa   | 3   | 43.3                | -0.9 | 3.5  | 3   | 58.7                | +0.7              | 3.5  | -0.1 | 3,5  |
| Spain          | 71  | 45.1                | +0.9 | 3.6  | 72  | 58.1                | +0.1              | 3.4  | +0.5 | 3,5  |
| Turkey         | 41  | 46.9                | +2.7 | 6.1  | 41  | 59.5                | +1.5              | 5.3  | +2.1 | 5,7  |
|                | •   | •                   | •    | •    | •   | •                   |                   |      | •    | •    |
| Overall        | 838 | 45.2                | +1.0 | 5.2  | 838 | 58.0                | 0.0               | 5.0  | +0.5 | 5.3  |

Table 6. Results per Country for Lyophilised Hemolysate

\* Individual laboratories of a number of countries

| Manufacturer              | Та  | EurA1c<br>rget 44.2 | -    | nol  | Ta  | EurA1c<br>rget 58.0 | 2017-2<br>mmol/n | nol | Mean<br>2 Samples |     |  |
|---------------------------|-----|---------------------|------|------|-----|---------------------|------------------|-----|-------------------|-----|--|
|                           | n   | Mean                | Bias | CV % | n   | Mean                | Bias             | CV% | Bias              | CV% |  |
| Abbott Architect          | 33  | 41.6                | -2.6 | 6.8  | 34  | 53.8                | -4.2             | 6.6 | -3.4              | 6.7 |  |
| Beckman Coulter AU        | 9   | 49.2                | +5.0 | 7.1  | 9   | 61.4                | +3.4             | 4.8 | +4.2              | 6.0 |  |
| Bio-Rad D10               | 39  | 43.6                | -0.6 | 6.5  | 39  | 55.8                | -2.2             | 4.5 | -1.4              | 5.5 |  |
| Bio-Rad D100              | 18  | 44.6                | +0.4 | 2.6  | 18  | 57.4                | -0.6             | 1.5 | -0.1              | 2.1 |  |
| Bio-Rad other             | 53  | 44.6                | +0.4 | 4.4  | 53  | 57.6                | -0.4             | 4.1 | 0.0               | 4.3 |  |
| Bio-Rad Variant           | 37  | 46.6                | +2.4 | 6.3  | 37  | 59.7                | +1.7             | 3.9 | +2.1              | 5.1 |  |
| Menarini (ARKRAY) HA 8160 | 75  | 44.7                | +0.5 | 4.6  | 74  | 57.6                | -0.4             | 3.9 | +0.1              | 4.3 |  |
| Menarini (ARKRAY) HA 8180 | 78  | 45.2                | +1.0 | 3.1  | 78  | 57.8                | -0.2             | 3.2 | +0.4              | 3.2 |  |
| Menarini other            | 36  | 44.9                | +0.7 | 3.5  | 36  | 57.3                | -0.7             | 3.9 | 0.0               | 3.7 |  |
| Not Known                 | 24  | 47.7                | +3.5 | 10.2 | 17  | 59.4                | +1.4             | 9.5 | +2.5              | 9.9 |  |
| Roche Diagnostics         | 135 | 45.9                | +1.7 | 5.0  | 135 | 59.4                | +1.4             | 4.7 | +1.6              | 4.9 |  |
| Sebia Capillarys 2        | 59  | 45.1                | +0.9 | 3.7  | 59  | 57.4                | -0.6             | 2.6 | +0.1              | 3.2 |  |
| Sebia Capillarys 3        | 8   | 45.4                | +1.2 | 2.1  | 8   | 57.5                | -0.5             | 1.4 | +0.3              | 1.8 |  |
| Siemens DCA/Vantage       | 9   | 49.7                | +5.5 | 5.1  | 9   | 62.9                | +4.9             | 7.3 | +5.2              | 6.2 |  |
| Siemens Dimension         | 18  | 47.2                | +3.0 | 4.3  | 19  | 58.6                | +0.6             | 5.7 | +1.8              | 5.0 |  |
| Tosoh G7                  | 15  | 45.9                | +1.7 | 5.5  | 17  | 58.6                | +0.6             | 4.5 | +1.2              | 5.0 |  |
| Tosoh G8                  | 79  | 44.6                | +0.4 | 3.7  | 79  | 57.7                | -0.3             | 3.8 | +0.1              | 3.8 |  |
| Tosoh other               | 55  | 45.5                | +1.3 | 3.5  | 55  | 57.9                | -0.1             | 2.9 | +0.6              | 3.2 |  |
| Trinity Premier Hb9210    | 20  | 45.0                | +0.8 | 2.2  | 21  | 58.0                | 0.0              | 2.4 | +0.4              | 2.3 |  |

Table 7. Results per Manufacturer for Lyophilised Hemolysate (n>5)

Remarkable biases are seen for Abbott Architect, Beckman Coulter AU and Siemens DCA/Vantage. For Siemens DCA/Vantage it is known that there is a matrix effect for lyophilised samples. For the Abbott enzymatic test we investigated the phenomenon: fresh whole blood and lyophilised hemolysates were assayed on our Abbott instrument after manufacture of the samples and we did not find a difference in results. However, on storage in the refrigerator for 6 and 18 months we found a decrease in measured HbA1c which we did not see in the same samples stored in the freezer (see section on stability on page 13).

In both Austria and France the negative bias comes along with a very low between laboratory CV (see table 9). This suggests that there is a long term stability issue for Abbott when samples are stored in the refrigerator. We started a detailed stability study to investigate this.

| Manufacturer                  | EurA1c 2017-1<br>Target 44.2 mmol/mol |      |      | EurA1c 2017-2<br>Target 58.0 mmol/mol |   |      |      | Mean<br>2 Samples |      |     |
|-------------------------------|---------------------------------------|------|------|---------------------------------------|---|------|------|-------------------|------|-----|
|                               | n                                     | Mean | Bias | CV %                                  | n | Mean | Bias | CV%               | Bias | CV% |
| Abbott other                  | 3                                     | 42.4 | -1.8 | 6.4                                   | 5 | 56.2 | -1.8 | 3.0               | -1.8 | 4.7 |
| Beckman Coulter               | 3                                     | 48.5 | +4.3 | 1.5                                   | 3 | 61.4 | +3.4 | 1.6               | +3.9 | 1.6 |
| Beckman Coulter P/ACE MDQ     | 1                                     | 44.0 | -0.2 |                                       | 2 | 57.0 | -1.0 | 2.5               | -0.6 | 2.5 |
| Beckman Coulter UC DxC        | 4                                     | 49.7 | +5.5 | 1.0                                   | 4 | 61.8 | +3.8 | 6.8               | +4.7 | 3.9 |
| Ceragem LabonaCheck A1c       | 2                                     | 43.0 | -1.2 | 3.3                                   | 2 | 55.0 | -3.0 | 5.1               | -2.1 | 4.2 |
| Erba Diagnostics other        | 3                                     | 45.2 | +1.0 | 7.9                                   | 3 | 55.9 | -2.1 | 6.4               | -0.6 | 7.2 |
| ISE S.r.I. Hemo One ISE HbA1c | 1                                     | 49.7 | +5.5 |                                       | 1 | 63.1 | +5.1 |                   | +5.3 |     |
| Menarini (ARKRAY) HA 8140     | 1                                     | 45.0 | +0.8 |                                       | 2 | 56.5 | -1.5 | 1.3               | -0.4 | 1.3 |
| Mindray                       | 2                                     | 43.4 | -0.8 | 4.6                                   | 2 | 57.0 | -1.0 | 2.5               | -0.9 | 3.6 |
| Randox RX Daytona             | 1                                     | 49.0 | +4.8 |                                       | 1 | 63.0 | +5.0 |                   | +4.9 |     |
| Randox other                  | 1                                     | 45.3 | +1.1 |                                       | 1 | 63.9 | +5.9 |                   | +3.5 |     |
| Sebia Minicap                 | 5                                     | 44.2 | 0.0  | 1.0                                   | 5 | 58.0 | 0.0  | 6.1               | 0.0  | 3.6 |
| Sekisui CS T240               | 2                                     | 46.5 | +2.3 | 4.6                                   | 2 | 57.5 | -0.5 | 6.1               | +0.9 | 5.4 |
| Siemens Advia                 | 4                                     | 48.3 | +4.1 | 3.5                                   | 3 | 62.0 | +4.0 | 5.6               | +4.1 | 4.6 |
| Siemens other                 | 3                                     | 46.9 | +2.7 | 4.6                                   | 3 | 59.8 | +1.8 | 7.4               | +2.3 | 6.0 |
| Tosoh G11                     | 1                                     | 45.0 | +0.8 |                                       | 1 | 58.0 | 0.0  |                   | +0.4 |     |
| Tosoh GX                      | 1                                     | 43.2 | -1.0 |                                       | 1 | 55.2 | -2.8 |                   | -1.9 |     |

Table 8. Results per Manufacturer for Lyophilised Hemolysate (n < 6)

Table 9 shows results per manufacturer per country. Included are only manufacturers with 6 or more participants in at least 2 countries.

High biases (>2 mmol/mol) and high between laboratory CVs (>6%) are marked.

| Method                    | n        | HbA1         | c Low      | HbA1         | : High     | Mean         |            |  |
|---------------------------|----------|--------------|------------|--------------|------------|--------------|------------|--|
| Metriod                   |          | Bias         | CV         | Bias         | CV         | Bias         | CV         |  |
| Abbott Architect          |          |              |            |              |            |              |            |  |
| Overall                   | 33       | -2.6         | 6.8        | -4.2         | 6.6        | -3.4         | 6.7        |  |
| FR                        | 8        | -3.3         | 3.0        | -5.0         | 2.5        | -4.2         | 2.8        |  |
| GR                        | 6        | -0.7         | 5.6        | -1.7         | 4.8        | -1.2         | 5.2        |  |
| AT                        | 11       | -3.2         | 1.5        | -4.9         | 2.0        | -4.1         | 1.8        |  |
| Bio-Rad D10               |          | 0.0          | 0.5        |              | 4 5        |              |            |  |
| Overall                   | 39       | -0.6         | 6.5        | -2.2         | 4.5        | -1.4         | 5.5        |  |
| FR<br>CZ                  | 10       | -1.6         | 4.9        | -3.1         | 5.0        | -2.4         | 5.0        |  |
| Bio-Rad D100              | 8        | +0.9         | 8.6        | -0.7         | 3.9        | +0.1         | 6.3        |  |
| Overall                   | 18       | +0.4         | 2.6        | -0.6         | 1.5        | -0.1         | 2.1        |  |
| AT                        | 6        | +0.4         | 1.2        | -0.2         | 1.3        | +0.1         | 1.3        |  |
| ES                        | 7        | -0.1         | 3.8        | -1.1         | 1.2        | -0.6         | 2.5        |  |
| Bio-Rad Variant           | 1        | 0.1          | 0.0        | 1.1          | 1.2        | 0.0          | 2.0        |  |
| Overall                   | 37       | +2.4         | 6.3        | +1.7         | 3.9        | +2.1         | 5.1        |  |
| FR                        | 11       | +4.1         | 5.5        | +3.2         | 3.7        | +3.7         | 4.6        |  |
| TR                        | 9        | +4.0         | 5.0        | +2.5         | 3.6        | +3.3         | 4.3        |  |
| Menarini (ARKRAY) HA 8160 |          |              |            |              |            |              |            |  |
| Overall                   | 75       | +0.5         | 4.6        | -0.4         | 3.9        | +0.1         | 4.3        |  |
| GR                        | 13       | -0.2         | 4.7        | +0.1         | 3.4        | -0.1         | 4.1        |  |
| IT-CRB                    | 16       | -0.3         | 5.5        | -1.1         | 2.4        | -0.7         | 4.0        |  |
| AT                        | 8        | +1.4         | 3.5        | 0.0          | 3.6        | +0.7         | 3.6        |  |
| PT                        | 25       | +1.0         | 4.0        | -0.5         | 4.2        | +0.3         | 4.1        |  |
| CZ                        | 6        | +1.8         | 4.6        | +2.1         | 5.8        | +2.0         | 5.2        |  |
| Menarini (ARKRAY) HA 8180 |          | -            |            |              |            | -            |            |  |
| Overall                   | 78       | +1.0         | 3.1        | -0.2         | 3.2        | +0.4         | 3.2        |  |
| IT-CRB                    | 10       | +1.8         | 2.0        | +0.6         | 2.2        | +1.2         | 2.1        |  |
| INT*                      | 10       | +0.8         | 1.8        | -0.6         | 2.5        | +0.1         | 2.2        |  |
| AT                        | 23       | +0.6         | 2.7        | -0.6         | 3.2        | 0.0          | 3.0        |  |
| ES                        | 30       | +1.4         | 3.0        | +0.4         | 2.5        | +0.9         | 2.8        |  |
| Roche Diagnostics         | 105      | 4 7          | 5.0        |              | 4.7        | 4.0          | 4.0        |  |
| Överall                   | 135      | +1.7         | 5.0        | +1.4         | 4.7        | +1.6         | 4.9        |  |
| FR                        | 9        | +0.9         | 8.3        | +1.8         | 5.0        | +1.4         | 6.7        |  |
| GR                        | 21       | +1.6         | 4.3        | +0.6         | 6.5        | +1.1         | 5.4        |  |
| AT<br>CZ                  | 62<br>17 | +1.6<br>+2.2 | 3.8<br>5.4 | +1.3<br>+1.9 | 3.4<br>4.8 | +1.5<br>+2.1 | 3.6<br>5.1 |  |
| TR                        | 6        | +2.2         | 3.1        | +1.9         | 4.0        | +4.5         | 3.8        |  |
| Sebia Capillarys 2        | 0        | 74.5         | 5.1        | 74.0         | 4.5        | 74.5         | 5.0        |  |
| Overall                   | 59       | +0.9         | 3.7        | -0.6         | 2.6        | +0.1         | 3.2        |  |
| FR                        | 27       | +1.0         | 3.8        | -0.6         | 2.4        | +0.2         | 3.1        |  |
| INT*                      | 14       | +1.0         | 3.5        | +0.1         | 3.2        | +0.6         | 3.4        |  |
| ES                        | 6        | +1.0         | 1.7        | -1.2         | 2.1        | -0.1         | 1.9        |  |
| Tosoh G7                  |          |              |            |              |            | 0.1          | 1.0        |  |
| Overall                   | 15       | +1.7         | 5.5        | +0.6         | 4.5        | +1.2         | 5.0        |  |
| GR                        | 5        | +3.0         | 7.1        | +2.4         | 5.0        | +2.7         | 6.1        |  |
| CZ                        | 7        | +0.9         | 5.0        | -1.0         | 2.6        | -0.1         | 3.8        |  |
| Tosoh G8                  |          |              |            |              |            |              |            |  |
| Overall                   | 79       | +0.4         | 3.7        | -0.3         | 3.8        | +0.1         | 3.8        |  |
| FR                        | 25       | -0.2         | 2.4        | -0.3         | 4.2        | -0.3         | 3.3        |  |
| IT-CRB                    | 10       | +1.3         | 7.0        | -1.2         | 4.7        | 0.0          | 5.9        |  |
| INT*                      | 10       | -0.1         | 2.3        | -1.0         | 2.6        | -0.6         | 2.5        |  |
| AT                        | 7        | -0.8         | 2.6        | +0.7         | 3.4        | -0.1         | 3.0        |  |
| ES                        | 11       | +0.9         | 2.9        | -0.4         | 2.7        | +0.3         | 2.8        |  |
| CZ                        | 6        | +1.6         | 1.6        | +0.7         | 1.4        | +1.2         | 1.5        |  |
| TR                        | 8        | +0.9         | 3.1        | 0.0          | 5.2        | +0.4         | 4.2        |  |

Table 9. Lyophilised Hemolysate Results per Manufacturer and Country (n>5)

\* Group of Individual laboratories of a number of countries

# **IV. Value Assignment (Targeting)**

The samples in their respective matrices have been measured with the IFCC RMP, the IFCC SRLs, the US NGSP SRLs and the Swedish Mono S. Table 10 shows the results.

|                    | (ran        | Low HbA1c<br>(range 43.5 – 44.9 mmol/mol) |                    |                  |             | High HbA1c<br>(range 57.2 – 58.8 mmol/mol) |                    |                  |  |
|--------------------|-------------|-------------------------------------------|--------------------|------------------|-------------|--------------------------------------------|--------------------|------------------|--|
| Matrix             | IFCC<br>RMP | IFCC<br>SRLs                              | US<br>NGSP<br>SRLs | Sweden<br>Mono S | IFCC<br>RMP | IFCC<br>SRLs                               | US<br>NGSP<br>SRLs | Sweden<br>Mono S |  |
|                    | n = 5       | n = 8                                     | n = 3              | n = 1            | n = 5       | n = 8                                      | n = 3              | n = 1            |  |
| Fresh Whole Blood  | 44.2        | 44.7                                      | 44.6               | 44.2             | 58.0        | 58.3                                       | 58.7               | 57.4             |  |
| Lyophilised Hem    | 43.8        | 45.6                                      | 45.0               | 44.2             | 57.0        | 58.3                                       | 58.3               | 57.4             |  |
| Frozen Whole Blood | 44.3        | 44.6                                      | 44.9               | 44.7             | 58.2        | 58.1                                       | 58.3               | 57.4             |  |

1) US-NGSP and Sweden Mono-S results in % are converted to SI (IFCC) units with the respective Master Equations

2) Expanded Uncertainty (k=2) of the IFCC RMP in fresh whole blood are 0.7 mmol/mol in the low and 0.8 in the high sample.

3) In yellow: values outside the uncertainty range of the assigned values in fresh whole blood with the IFCC RMP

# V. Homogeneity

Homogeneity testing of the samples EurA1c-2017-2, 4 and 6 is performed according to ISO 13528:2005 (Annex B) with the Menarini 8180V. The results in table 11 show that the samples are homogeneous.

|                        | Fresh Whole Blood |       |        |               |      | philised | Hemoly | ysate Frozen Whole Blood |      |       |        | bd    |
|------------------------|-------------------|-------|--------|---------------|------|----------|--------|--------------------------|------|-------|--------|-------|
| Vial                   | EurA1c 2017-2     |       |        | EurA1c 2017-4 |      |          |        | EurA1c 2017-6            |      |       |        |       |
|                        | 1                 | 2     | mean   | Δ             | 1    | 2        | mean   | Δ                        | 1    | 2     | mean   | Δ     |
| 1                      | 59.0              | 59.1  | 59.05  | 0.1           | 59.3 | 58.8     | 59.05  | 0.5                      | 57.9 | 57.9  | 57.90  | 0.0   |
| 2                      | 59.3              | 58.7  | 59.00  | 0.6           | 59.1 | 58.8     | 58.95  | 0.3                      | 58.0 | 57.9  | 57.95  | 0.1   |
| 3                      | 59.1              | 59.3  | 59.20  | 0.2           | 58.8 | 59.0     | 58.90  | 0.2                      | 57.7 | 57.9  | 57.80  | 0.2   |
| 4                      | 59.3              | 58.5  | 58.90  | 0.8           | 59.1 | 59.0     | 59.05  | 0.1                      | 57.7 | 57.9  | 57.80  | 0.2   |
| 5                      | 58.7              | 59.3  | 59.00  | 0.6           | 59.3 | 59.3     | 59.30  | 0.0                      | 57.7 | 57.7  | 57.70  | 0.0   |
| 6                      | 58.7              | 58.8  | 58.75  | 0.1           | 59.1 | 59.3     | 59.20  | 0.2                      | 57.3 | 57.7  | 57.50  | 0.4   |
| 7                      | 58.7              | 59.0  | 58.85  | 0.3           | 59.3 | 59.3     | 59.30  | 0.0                      | 57.5 | 57.9  | 57.70  | 0.4   |
| 8                      | 59.1              | 58.8  | 58.95  | 0.3           | 59.4 | 59.3     | 59.35  | 0.1                      | 57.5 | 57.9  | 57.70  | 0.4   |
| 9                      | 58.7              | 59.1  | 58.90  | 0.4           | 59.3 | 59.0     | 59.15  | 0.3                      | 57.9 | 57.7  | 57.80  | 0.2   |
| 10                     | 59.0              | 58.8  | 58.90  | 0.2           | 59.3 | 59.1     | 59.20  | 0.2                      | 57.9 | 57.7  | 57.80  | 0.2   |
| 11                     | 59.1              | 58.7  | 58.90  | 0.4           | 59.0 | 59.1     | 59.05  | 0.1                      | 57.5 | 57.9  | 57.70  | 0.4   |
| 12                     | 59.0              | 58.7  | 58.85  | 0.3           | 59.0 | 59.1     | 59.05  | 0.1                      | 57.5 | 57.9  | 57.70  | 0.4   |
| average                |                   |       | 58.9   |               |      |          | 59.1   |                          |      |       | 57.8   |       |
| SD                     |                   | 0.000 | 0.115  | 0.292         |      | 0.091    | 0.144  | 0.157                    |      | 0.000 | 0.116  | 0,201 |
| 0.3 x SD <sub>RL</sub> |                   |       | 0.306  |               |      |          | 0.306  |                          |      |       | 0.306  |       |
| Criterion              |                   |       | -0.306 |               |      |          | -0.215 |                          |      |       | -0.306 |       |
| Homogen                | eity:             |       | Pass   |               |      |          | Pass   |                          | Pass |       |        |       |

## Table 11. Homogeneity test of EurA1c 2017-2, 4 and 6

# **VI Stability**

# Fresh Whole Blood

Fresh whole blood samples EurA1c 2017-2 (HbA1c 58.0 mmol/mol) were stored at room temperature and in the refrigerator at 2-8°C and measured after 1,2,3,4,5 and 8 days after storage. Results are expressed as the difference in measured HbA1c on day X and day 1 (table 12). It can be seen that on storage at room temperature results of three methods start to show differences. It can be concluded that at room temperature samples are stable for 5 and in the refrigerator for at least 8 days.

| Method                      | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 8 |
|-----------------------------|-------|-------|-------|-------|-------|-------|
| Storage at Room Temperature |       |       |       |       |       |       |
| Menarini/ARKRAY HA 8180V    | 0     | 0     | +1    | 0     | -1    | -3    |
| Trinity Premier Hb9210      | 0     | 0     | 0     | -1    | -1    | -2    |
| Sebia Capillarys 2          | 0     | 0     | +1    | 0     | 0     | -2    |
| Roche Cobas c513            | 0     | 0     | -1    | 0     | -1    | 0     |
| Abbott Architect C4000      | 0     | 0     | +1    | +1    | 0     | 0     |
| Tosoh G8                    | 0     | 0     | +1    | 0     | 0     | -1    |
| Storage Refrigerator        |       |       |       |       |       |       |
| Menarini/ARKRAY HA 8180V    | 0     | 0     | +1    | +1    | 0     | +1    |
| Trinity Premier Hb9210      | 0     | 0     | 0     | 0     | 0     | 0     |
| Sebia Capillarys 2          | 0     | -1    | 0     | +1    | 0     | 0     |
| Roche Cobas c513            | 0     | +1    | 0     | 0     | +1    | 0     |
| Abbott Architect C4000      | 0     | 0     | 0     | 0     | 0     | 0     |
| Tosoh G8                    | 0     | 0     | 0     | 0     | 0     | 0     |

Table 12. Stability\* of Fresh Whole Blood at Room Temperature and in the Refrigerator

\* Difference between Day X and Day 1 in mmol/mol

# Lyophilised Hemolysate

Lyophilised hemolysate samples EurA1c 2016-1 (HbA1c 42.3 mmol/mol) were stored in the refrigerator at 2-8°C and in the freezer at -20°C and measured after 6 and 18 months (results of EurA1c 2016 samples are chosen to show stability because of these samples long-term results are available). Results are shown in table 13. It can be seen that the results of the Abbott Architect enzymatic assay start to show differences after 6 months. This is a remarkable and unexpected result of this new test. This may explain why a negative bias is observed in the EurA1c trial in some countries. Further investigation of this is scheduled.

Table 13. Stability\* of Lyophilised Hemolysate in Refrigerator and Freezer -20°C

| Method                   | 0 month 6 months |    | 18 months |  |
|--------------------------|------------------|----|-----------|--|
| Storage Refrigerator     |                  |    |           |  |
| Menarini/ARKRAY HA 8180V | 0                | -1 | -1        |  |
| Trinity Premier Hb9210   | 0                | -1 | -1        |  |
| Sebia Capillarys 2       | 0                | -1 | -1        |  |
| Roche Cobas c513         | 0                | 0  | 0         |  |
| Abbott Architect C4000   | 0                | -4 | -6        |  |
| Tosoh G8                 | 0                | +1 | +1        |  |
| Storage Freezer -20°C    |                  |    |           |  |
| Menarini/ARKRAY HA 8180V | 0                | -1 | 0         |  |
| Trinity Premier Hb9210   | 0                | +1 | 0         |  |
| Sebia Capillarys 2       | 0                | -1 | -1        |  |
| Roche Cobas c513         | 0                | +1 | 0         |  |
| Abbott Architect C4000   | 0                | 0  | +1        |  |
| Tosoh G8                 | 0                | 0  | +1        |  |

\* Difference between Month X and Month 0 in mmol/mol

Frozen Whole Blood

Frozen whole blood samples EurA1c 2016-1 (HbA1c 42.3 mmol/mol) were stored in freezers at -20°C and -70°C and measured after 6 and 18 months (results of EurA1c 2016 samples are chosen to show stability because of these samples long-term results are available).

Results are shown in table 14. It can be seen that on storage at -20°C results start to differ from the originally measured HbA1c concentration.

| Method                   | 0 month 6 months |    | 18 months |  |
|--------------------------|------------------|----|-----------|--|
| Storage Freeze -20°C     |                  |    |           |  |
| Menarini/ARKRAY HA 8180V | 0                | 0  | +3        |  |
| Trinity Premier Hb9210   | 0                | -2 | -4        |  |
| Sebia Capillarys 2       | 0                | 0  | +1        |  |
| Roche Cobas c513         | 0                | 0  | 0         |  |
| Abbott Architect C4000   | 0                | 0  | +2        |  |
| Tosoh G8                 | 0                | 0  | -2        |  |
| Storage Freezer -70°C    |                  |    |           |  |
| Menarini/ARKRAY HA 8180V | 0                | 0  | 0         |  |
| Trinity Premier Hb9210   | 0                | 0  | -1        |  |
| Sebia Capillarys 2       | 0                | 0  | -1        |  |
| Roche Cobas c513         | 0                | 0  | +1        |  |
| Abbott Architect C4000   | 0                | 0  | 0         |  |
| Tosoh G8                 | 0                | 0  | 0         |  |

Table 14. Stability\* of Frozen Whole Blood in Freezer -20°C and Freezer -70°C

\* Difference between Month X and Month 0 in mmol/mol

# VII Units and POCT meters

In the EurA1c Trial 2017 we asked information on units and POCT meters

## Unit of measurement reported

Can you let us know how units are used/reported in your country

- a. IFCC units measured by laboratories IFCC units reported by you
- b. NGSP units measured by laboratories NGSP units reported by you
  c. NGSP units measured by laboratories converted to IFCC units by you and reported to us

### **POCT** meters

Do you know the test setting for POCT meters: within-laboratory, operated by professionals with training in laboratory medicine, or in the vicinity of the patient by a non-laboratory professional?

- a. I don't know
- b. Majority by laboratory professionals
- c. Majority by non-laboratory professionals

Table 15 shows your answers.

|                 |                   | Units             |                      |                           | POCT                     |                              |
|-----------------|-------------------|-------------------|----------------------|---------------------------|--------------------------|------------------------------|
| EQA organiser   | a<br>IFCC<br>IFCC | b<br>NGSP<br>NGSP | c<br>NGSP<br>to IFCC | <b>a</b><br>Don't<br>know | <b>b</b><br>Lab<br>prof. | <b>c</b><br>Non-Lab<br>prof. |
| Total           | 14                | 4                 | 1                    | 10                        | 2                        | 6                            |
| Belgium         |                   |                   |                      |                           |                          |                              |
| Germany Instand |                   |                   |                      |                           |                          |                              |
| Germany RfB     | Х                 |                   |                      | Х                         |                          |                              |
| France          | Х                 |                   |                      | Х                         |                          |                              |
| Greece          |                   |                   |                      |                           |                          |                              |
| International   | Х                 |                   |                      | Х                         |                          |                              |
| Ireland         | Х                 |                   |                      |                           |                          | Х                            |
| Italy CRB       | Х                 |                   |                      | Х                         |                          |                              |
| Italy Polymed   | Х                 |                   |                      | Х                         |                          |                              |
| Mexico          |                   |                   | Х                    |                           | Х                        |                              |
| Netherlands     | Х                 |                   |                      | Х                         |                          |                              |
| Austria         | Х                 | Х                 |                      | Х                         |                          |                              |
| Portugal        | Х                 |                   |                      | Х                         |                          |                              |
| Spain           |                   | Х                 |                      |                           |                          | Х                            |
| Czech Republic  | Х                 |                   |                      |                           |                          | Х                            |
| Turkey          | Х                 |                   |                      |                           |                          | Х                            |
| UK              | Х                 |                   |                      |                           |                          | Х                            |
| South Africa    |                   | Х                 |                      | Х                         |                          |                              |
| Sweden          | Х                 |                   |                      |                           | Х                        |                              |
| Switzerland     | Х                 | Х                 |                      | Х                         |                          | Х                            |

Table 15. Units and POCT meters

# VIII Organisations and Persons Involved

| Coun | try   | Organisation                      | Person                                                                     |  |  |  |  |  |
|------|-------|-----------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|
| EQA  | Orga  | anisers                           |                                                                            |  |  |  |  |  |
| AT   |       | JASTA                             | Christoph Buchta, Mathias M. Mueller                                       |  |  |  |  |  |
| BE   |       | nsano                             | Yolande Lenga                                                              |  |  |  |  |  |
| CH   | CSC   |                                   | Pierre-Alan Morandi, Dagmar Kesseler                                       |  |  |  |  |  |
| CZ   | SEK   |                                   | Marek Budina, Josef Kratochvila, Bedrich Friedecky                         |  |  |  |  |  |
| DE   |       | TAND                              | Patricia Kaiser                                                            |  |  |  |  |  |
| DE   |       | erence Institute for Bioanalytics | Anja Kessler                                                               |  |  |  |  |  |
| ES   | SEC   |                                   | Montserrat Ventura Alemany, Carmen Perich Alsina, Carmen<br>González Gómez |  |  |  |  |  |
| FR   | Biolo | ogie Prospective                  | Jean-Pascal Siest                                                          |  |  |  |  |  |
| GR   |       | AP/General Hospital               | Alexander Haliassos, Konstantinos Makris, Otto Panagiotakis                |  |  |  |  |  |
| IE   | IEQ/  | AS                                | Hazel Graham, Anne Kane, Thomas P. Smith, Ned Barrett                      |  |  |  |  |  |
| INT  | ERL   |                                   | Cas Weykamp                                                                |  |  |  |  |  |
| IT   | Cen   | tro di Ricerca Biomedica          | Laura Sciacovelli, Mario Plebani                                           |  |  |  |  |  |
| IT   |       | med SRL                           | Massimo Quercioli, Francesca Masi                                          |  |  |  |  |  |
| MX   |       | pratorios Biomedicos Panuco       | Eduardo Rojano Rodriguez                                                   |  |  |  |  |  |
| NL   | SKN   |                                   | Cas Weykamp                                                                |  |  |  |  |  |
| PT   |       | Nac. de Saude Dr. Ricardo Jorge   | Ana Andrade Faria, Ana Cardoso, Helena Correia                             |  |  |  |  |  |
| SA   |       | erberg Hospital                   | Rajiv T, Erasmus                                                           |  |  |  |  |  |
| SE   |       | JALIS                             | Gunnar Nordin, Carita Krook Persson                                        |  |  |  |  |  |
| UK   | WEC   |                                   | Annette Thomas, Samantha Jones                                             |  |  |  |  |  |
| TR   |       | ITAK UME / Pammukale<br>rersity   | Fatma Akcadag, Müslüm Akgöz, Diler Aslan                                   |  |  |  |  |  |
| IFCC | Net   | work Laboratories                 |                                                                            |  |  |  |  |  |
| FR   | CHL   | J Reims                           | Philippe Gillery, Stéphane Jaisson                                         |  |  |  |  |  |
| DE   | INS   | TAND                              | Patricia Kaiser                                                            |  |  |  |  |  |
| IT   | CIRI  | ME                                | Andrea Mosca, Renata Paleari                                               |  |  |  |  |  |
| NL   | Isala | à                                 | Erna Lenters-Westra, Robbert J. Slingerland, Janine Slootstra              |  |  |  |  |  |
| NL   | Que   | en Beatrix Hospital               | Carla Siebelder, Sanne Leppink                                             |  |  |  |  |  |
| IFCC | Sec   | ondary Reference Laboratorie      | S                                                                          |  |  |  |  |  |
| IT   | CIRI  | ME                                | Andrea Mosca, Renata Paleari                                               |  |  |  |  |  |
| NL   | Isala | 1                                 | Erna Lenters, Robbert Slingerland, Janine Slootstra                        |  |  |  |  |  |
| NL   | Que   | en Beatrix Hospital               | Carla Siebelder, Sanne Leppink                                             |  |  |  |  |  |
| NGS  | P Ne  | twork Laboratories                |                                                                            |  |  |  |  |  |
| US   | Univ  | ersity of Missouri                | Randie R. Little, Shawn M. Connolly                                        |  |  |  |  |  |
| US   |       | versity of Minnesota              | Maren Nowicki, Vicky Makky                                                 |  |  |  |  |  |
|      |       | aboratory                         |                                                                            |  |  |  |  |  |
| SE   | SU/S  | Sahlgrenska                       | Anders Elmgren, Gunnar Nordin                                              |  |  |  |  |  |
|      |       | t Committee (members IFCC C       |                                                                            |  |  |  |  |  |
| UK   | -     | olk and Norwich University Hosp.  | W. Garry John                                                              |  |  |  |  |  |
| UK   |       | ersity of East Anglia             | Emma Énglish                                                               |  |  |  |  |  |
| US   |       | onal Institutes of Health         | David B. Sacks                                                             |  |  |  |  |  |
| SA   |       | erberg Hospital                   | Rajiv T. Erasmus                                                           |  |  |  |  |  |
| NL   | Que   | en Beatrix Hospital               | Cas Weykamp                                                                |  |  |  |  |  |
|      |       | agement                           |                                                                            |  |  |  |  |  |
| NL   |       | rview                             | Cas Weykamp                                                                |  |  |  |  |  |
| NL   | Coo   | rdination                         | Carla Siebelder                                                            |  |  |  |  |  |
| NL   |       | lity Assurance                    | Liesbeth Schröer                                                           |  |  |  |  |  |
| NL   |       | a Processing                      | Irene de Graaf                                                             |  |  |  |  |  |
| NL   | Sam   | ple Logistics                     | Marieke te Winkel                                                          |  |  |  |  |  |